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CCORDING TO WEINDRUCH AND SOHAL IN A 1997 ARTICLE IN THE JOURNAL,

reducing food availability over a lifetime (caloric restriction) has remark-

able effects on aging and the life span in animals.! The authors proposed
that the health benefits of caloric restriction result from a passive reduction in the
production of damaging oxygen free radicals. At the time, it was not generally
recognized that because rodents on caloric restriction typically consume their
entire daily food allotment within a few hours after its provision, they have a
daily fasting period of up to 20 hours, during which ketogenesis occurs. Since
then, hundreds of studies in animals and scores of clinical studies of controlled
intermittent fasting regimens have been conducted in which metabolic switching
from liver-derived glucose to adipose cell-derived ketones occurs daily or several
days each week. Although the magnitude of the effect of intermittent fasting on
life-span extension is variable (influenced by sex, diet, and genetic factors), studies
in mice and nonhuman primates show consistent effects of caloric restriction on
the health span (see the studies listed in Section S3 in the Supplementary Appen-
dix, available with the full text of this article at NEJM.org).

Studies in animals and humans have shown that many of the health benefits
of intermittent fasting are not simply the result of reduced free-radical production
or weight loss.>® Instead, intermittent fasting elicits evolutionarily conserved,
adaptive cellular responses that are integrated between and within organs in a
manner that improves glucose regulation, increases stress resistance, and sup-
presses inflammation. During fasting, cells activate pathways that enhance intrin-
sic defenses against oxidative and metabolic stress and those that remove or repair
damaged molecules (Fig. 1).° During the feeding period, cells engage in tissue-
specific processes of growth and plasticity. However, most people consume three
meals a day plus snacks, so intermittent fasting does not occur.*¢

Preclinical studies consistently show the robust disease-modifying efficacy of
intermittent fasting in animal models on a wide range of chronic disorders, in-
cluding obesity, diabetes, cardiovascular disease, cancers, and neurodegenerative
brain diseases.>”* Periodic flipping of the metabolic switch not only provides the
ketones that are necessary to fuel cells during the fasting period but also elicits
highly orchestrated systemic and cellular responses that carry over into the fed
state to bolster mental and physical performance, as well as disease resistance.'>!?

Here, we review studies in animals and humans that have shown how intermit-
tent fasting affects general health indicators and slows or reverses aging and
disease processes. First, we describe the most commonly studied intermittent-
fasting regimens and the metabolic and cellular responses to intermittent fasting.
We then present and discuss findings from preclinical studies and more recent
clinical studies that tested intermittent-fasting regimens in healthy persons and in
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Figure 3. Cellular and Molecular Mechanisms Underlying Improved Organ Function and Resistance to Stress
and Disease with Intermittent Metabolic Switching.

Periods of dietary energy restriction sufficient to cause depletion of liver glycogen stores trigger a metabolic switch
toward use of fatty acids and ketones. Cells and organ systems adapt to this bioenergetic challenge by activating
signaling pathways that bolster mitochondrial function, stress resistance, and antioxidant defenses while up-regulating
autophagy to remove damaged molecules and recycle their components. During the period of energy restriction, cells
adopt a stress-resistance mode through reduction in insulin signaling and overall protein synthesis. Exercise enhances
these effects of fasting. On recovery from fasting (eating and sleeping), glucose levels increase, ketone levels plum-
met, and cells increase protein synthesis, undergoing growth and repair. Maintenance of an intermittent-fasting reg-
imen, particularly when combined with regular exercise, results in many long-term adaptations that improve mental
and physical performance and increase disease resistance. HRV denotes heart-rate variability.
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Figure 1. Nutrient Sensors in Fasting and Their Roles in Mitochondrial Disease
Both fasting and mitochondrial disease can modify NAD*:NADH and AMP:ATP ratios

through decreased nutrient availability or through reduced respiratory chain activity and
have the potential to activate (red) nutrient sensors Sirtuin 1 (Sirt, an NAD"-dependent
histone deacetylase) or AMP-activated kinase (AMPK) and increase mitochondrial
biogenesis by activating peroxisome proliferator-activated receptor gamma coactivator 1-
alpha (PGC-1alpha). Upon decreased utilization of acetyl-coenzyme A (acetyl-coA), GCNS
(lysine acetyltransferase 2A) is activated and acetylates PGClalpha, to inactivate it (blue).
NAD", nicotinamide adenine dinucleotide, oxidized form; NADH, nicotinamide adenine
dinucleotide, reduced form; AMP, adenosine monophosphate; ATP, adenosine triphosphate;
Ac, acetyl group.
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A simplified common scheme of mitochondrial dynamics in stem cells and differentiated cells. In most types of stem cells and reprogrammed iPSCs, mitochondria are usually localized in the
nuclear periphery and characterized by sphere, fragmented, and punctate morphologies with fewer cristae (immature morphology). Correspondingly, mito-fission is high whereas mitochondrial
biogenesis is low, which maintains low mitochondrial mass. Stem cells generally rely on glycolysis as the major energy source and have low levels of ATP, OXPHOS, and ROS levels. In
differentiated cells, mitochondria change to more enlarged and elongated tubular morphology. Correspondingly, mito-fusion and biogenesis increase with the accumulation of mitochondria.

Comparably, differentiated cells have higher ATP, ROS, and OXPHOS levels.
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